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Abstract. The hierarchical reference theory (HRT) is a unified theory of fluids: in the dense
regime it has the accuracy typical of a good theory of the liquid state. At the same time,
close to a critical point, it develops the structure of a renormalization group theory in which
all non-universal quantities can be deduced from knowledge of the interatomic interaction. The
HRT can be applied above as well as below the critical temperature so that the phase diagram,
thermodynamic properties and distribution functions are obtained in a unified way. Similar
information can be extracted also from models of binary mixtures. In this case, the HRT
allows for the determination of the order parameter along lines of critical points and provides
an explanation of the strange crossover phenomena found in mixtures.

1. Introduction

For many years, the problem of developing a quantitative microscopic theory of fluids in the
region of the critical point of the liquid–vapour phase transition has found no satisfactory
answer. A successful theory should aim at deriving, from a realistic interatomic interaction,
thermodynamic quantities such as the temperatureTc and densityρc of the critical point
or the shape of the coexistence curve as well as the correlation functions. At the same
time, close to the critical point, the theory should develop the scaling structure of the
thermodynamic properties and correlation functions with appropriate critical exponents:
such a theory would necessarily be a global theory of the fluid state. In fact at a temperature
just 10% belowTc, the two coexisting phases have densities typical of the liquid and gas
state: about two thirds of the triple-point value (twice the critical value,ρc) on the liquid
branch and one third ofρc on the gas side. As a consequence, the theory should be
able to describe equally well a rather dilute system and a dense fluid with well developed
short-range order.

The modern theory of fluids, based on the method of integral equations for the radial
distribution functiong(r) or on perturbation theory around a reference system, such as
hard spheres, is quite accurate for the static properties of simple fluids. These approaches,
however, fail close to the critical point. In fact, all of these theories either do not go beyond
a mean-field-like description, or they develop some kind of pathology. For instance, one of
the most celebrated integral equations [1], the modified hypernetted-chain (MHNC) equation,
does not possess a critical point with diverging isothermal compressibilityκT and correlation
lengthξ . Rather it has a locus of branch point singularities in theρ–T plane whereκT and
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ξ reach a finite limit [2]. Therefore, one of the most fundamental properties of a critical
point, a diverging correlation length, is not accounted for in the MHNC equation.

Critical phenomena in fluids are understood in terms of a one-component order parameter
ψ, as in the Ising model. For a fluid,ψ is the local density of particles. The proper treatment
of critical fluctuations is provided by the renormalization group (RG) methods applied to an
effective local free energy, the Landau–Ginsburg–Wilson (LGW) functional, forψ(r). On
the basis of the universality hypothesis, this description is sufficient for obtaining the so-
called universal properties asymptotically close to the critical point, i.e. critical exponents
and scaling functions. This leaves, however, a number of questions unanswered. The
relation between the parameters entering the LGW functional and the microscopic interaction
is obscure and such parameters have to be taken as phenomenological inputs [3]. The extent
of the asymptotic region is also largely undetermined.

The situation is even worse in the case of a binary mixture. Mixtures have a rich phase
diagram with a variety of topologies. In multicomponent fluids even the identification of the
order parameter offers a serious problem because the character of the transition can change
continuously from that of pure liquid–vapour to mixing–demixing. Almost all theoretical
determinations of the phase diagram do not go beyond van der Waals theory or other mean-
field approaches.

About ten years ago we introduced [4] a novel approach in the theory of fluids, that
we named the hierarchical reference theory (HRT). The HRT is a proper theory of the
fluid state which applies to point particles interacting with a realistic interatomic potential
and which develops the RG structure close to a critical point. The approach is sufficiently
general that it can be used for one-component fluids, mixtures, lattice models and magnets.
A comprehensive review of the HRT can be found in reference [5]. Here we highlight some
of the key features of the HRT and present some recent developments. The general aspects
are discussed briefly in section 2 and some applications to the case of one-component fluids
are presented in section 3. Next we address the question of binary mixtures. In section 4
the order parameter and the nature of criticality in binary fluids are discussed. In section 5
we show how it is possible to derive from the general framework of the HRT a practical
scheme which gives the full phase diagram of a mixture, including the coexistence region,
along with non-trivial critical behaviour. Finally, we draw some conclusions in section 6.

2. The hierarchical reference theory of fluids

The HRT can be considered as a way to apply the momentum-space RG theory to a
microscopic model of a fluid. In the standard RG approach, the fluctuations of the local
order parameter are first decomposed into Fourier series, and then fluctuations of large
wavevectorsk (say k > Q) are integrated out giving rise to a new effective Hamiltonian
for the remaining fluctuations withk < Q. The procedure can be now iterated by reducing
the cut-off Q until all fluctuations are taken into account. In this way one generates a
sequence of effective Hamiltonians, each of them describing fluctuations below a certain
cut-off. This scheme, although formally exact, has some drawbacks. For instance it is
difficult to describe the short-range correlations present in the system and their influence
on the large-scale properties. Instead, we do not perform any partial integration nor do we
eliminate degrees of freedom: we analyse how the free energy and the correlation functions
are modified by the introduction of a cut-offQ in the diagrammatic expansion which defines
the observable quantities. An important technical observation is that introducing such a cut-
off is equivalent to considering a system with the same number of particles but modified
interaction. This has two consequences. At all intermediate steps of the HRT one is dealing
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with a proper statistical model of fluid, albeit with a rather peculiar pair interaction which
will be discussed below, so one can profit from the deep understanding developed in the
framework of liquid-state theories. This will be particularly valuable for the development of
approximations necessary to truncate the formally exact infinite set of equations generated
by the HRT. Secondly, the intermediate systems are defined over all length scales from
the atomic diameter up to arbitrarily large distances. Therefore full information on the
correlation functions is retained by the HRT.

We consider systems of structureless classical particles interacting with a central,
pairwise-additive interatomic potentialv(r). This interaction is written as the sum of a
short-range partvR(r) and a remainderw(r):

v(r) = vR(r) + w(r). (1)

The strong repulsive forces at short distance are included invR(r) which is often taken
as a hard-sphere potential of suitable diameterd. One recognizes here the starting point
of a standard perturbation theory of fluids. The properties of the ‘reference system’, i.e. a
system with pair interactionvR(r), are assumed known from some other theory. IfvR(r) is
(essentially) repulsive, the reference system has no phase transition at intermediate densities,
where the critical point is located, and the liquid–vapour transition appears only whenw(r)

is included. Notice thatw(r) does not necessarily represent purely attractive forces: the
only condition is thatw(r) has a well defined Fourier transform̃w(k) with a finite k → 0
limit. The HRT is based on the following steps. The first is the choice of the partially
coupled system, i.e. the precise definition of the cut-off wavevectorQ. This corresponds to
an interactionvQ(r) = vR(r) + wQ(r) wherewQ is most easily written in Fourier space:

w̃Q(k) =
{

w̃(k) for k > Q

0 for k < Q.
(2)

It is clear that asQ is moved fromQ = ∞ down to Q = 0 the system changes from
the reference to the fully interacting one. It can be shown that in the partially coupled
system (theQ-systemin the following), density fluctuations of wavevectork are strongly
suppressed forQ > k, while they are fully included for cut-offQ � k.

The second step of the HRT consists in the derivation of the exact evolution equations
for the properties of the partially coupled system as the cut-off is changed fromQ to
Q− dQ. Due to the discontinuity inδw̃Q(k) = w̃Q−dQ(k)− w̃Q(k), this requires a suitable
resummation of the perturbation expansion. In addition, it is convenient to define a modified
free energy:

AQ

V
= AQ

V
− 1

2ρ2
[
w̃(k = 0) − w̃Q(k = 0)

] + 1
2ρ

[
w(r = 0) − wQ(r = 0)

]
(3)

in which the contribution of the missing interactioñw(k)− w̃Q(k) is included in mean-field
approximation. V is the volume of the system. The evolution equation for this quantity
reads

− d

dQ

(−βAQ

V

)
= 1

2

∫
k=Q

dΩk

(2π)3
ln

[
1 + βw̃(Q)

CQ(k)

]
. (4)

Here, β = 1/kBT and CQ(k) represents a modified Ornstein–Zernike (OZ) correlation
function of theQ-system:

CQ(k) = čQ(k) − βw̃(k) − βw̃Q(k). (5)

where our OZ direct correlation functions include the ideal-gas contribution, i.e.čQ(k) =
cQ(k) − ρ−1. With this definition,CQ(k) is a continuous function ofk at k = Q while
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čQ(k) is not. We have obtained the analogous evolution equations forCQ(k) as well as for
all the higher-order direct correlation functionscn. The equation forcn involvesw, CQ, as
well as cj with all j = 3, . . . , (n + 2). Therefore, HRT generates an infinite hierarchy of
differential equations for the free energy and the direct correlation functions describing the
evolution of the properties of the system when the cut-offQ is changed.

The full hierarchy of equations simplifies considerably close to a critical point where
CQ=0(k = 0) tends to zero corresponding to the onset of the divergence of the isothermal
compressibility. In fact, the full hierarchy acquires a universal form: the interactionw̃(k)

drops out of the equations in theQ → 0 limit and at small momenta. It turns out that
these HRT equations coincide, in the critical region, with the Nicoll–Chang differential RG
generator [6] for an effective one-component order parameter theory defined by the field
theoretical action

S[ψ] =
∫

dx

{
1

2
|∇ψ|2 + rψ2 + uψ4

}
. (6)

Yet, the full HRT equations are much richer because HRT also describes the effects of
short-range correlations, absent in RG approaches.

Given the above-mentioned equivalence between the RG theory and the HRT in the
critical region, it is clear that HRT describes the universal critical behaviour as given by RG
theory and in particular contains non-trivial critical exponents and scaling laws. The values
of the critical exponents depend on the approximations introduced in order to make this set of
equations tractable. In three dimensions, we have considered so far a simple approximation.
It is based on an OZansatz, i.e. CQ(k) is assumed to be an analytic function ofk and this
corresponds to an exponentη = 0. The non-linear coupling between density fluctuations is
introduced by employing the exact compressibility sum rule

CQ(k = 0) = ∂2(−βAQ/V )

∂ρ2
. (7)

When we insert equation (7) in (4) we find a non-linear partial differential equation (PDE)
for AQ with respect toQ andρ which should be studied numerically. Using the standard
notation, the critical exponents in 3D turn out to be

γ = 1.378. . . ν = γ /2 β = 0.345. . . α = −0.07. . .. (8)

Alternatively, AQ(ρ, T ) can be expanded aroundρc up to fourth order. Substituting this
parametrization in the PDE and keeping only terms up to quadratic order in the coefficients,
we find a set of two coupled differential equations which can be studied analytically. The
resulting critical exponents have simple rational expressions satisfying the scaling relations.
In particular, in three dimensions, they read

γ = 1.2 ν = 0.6 β = 0.3 α = 0.2. (9)

In order to fully exploit the content of HRT and analyse the whole critical behaviour
of specific microscopic models, including the non-universal features, we start from the
exact form of the first HRT equation (4) and introduce some realistic approximation for
the two-body direct correlation functionCQ(k) at arbitrary values ofQ andk. In this way
equation (4) gives rise to a closed equation for the fluid state as discussed in the next section.

3. A differential theory of simple fluids

Let us assume that the reference system is the hard-sphere one with suitable diameterd.
This diameter is possibly a function of density and temperature if we wish to mimic a
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Figure 1. The coexistence curve and diameter of a Lennard-Jones fluid in the(ρ∗, T ∗) plane.
Full curve: the HRT. Open symbols: the MHNC result [17]. Full symbols: simulations [8].

soft-core repulsive potential, like that of the Lennard-Jones (LJ) fluid. In this case, we have
studied equation (4) together with the closure relation

CQ(k) = čR(k) − λQ βw̃(k) + GQ(k) (10)

wherečR(k) is the direct correlation function of the reference system (including the ideal-
gas term),GQ(k) is a function determined by the core condition for the partially coupled
system (i.e.gQ(r) = 0 for r < d) andλQ is determined by the sum rule (7). IfλQ were
unity, equation (10) would correspond to the mean-spherical approximation (MSA). The
non-trivial critical behaviour arises from the presence of this parameterλQ which couples
the ansatzfor the direct correlation function (10) to the evolution equation for the free
energy (4) and leads to the critical exponents (8). Solution of the full equations (4), (10)
gives the thermodynamics of the fluid throughout the phase diagram, including the universal
and non-universal properties in the critical region. Computations for the LJ potential give
results in good agreement with simulations. It is interesting to notice that at temperatures
T < Tc the integration of this hard-core HRT equation (HC-HRT) gives rigorously a flat
isotherm over a finite range of density: the coexistence of liquid and vapour is obtained as
an effect of the proper treatment of long-wavelength fluctuations and not as a result of an
ad hocMaxwell construction. The coexistence curve for the LJ fluid is shown in figure 1
and compared to simulation and MHNC results. Notice that only HRT is able to give the
full coexistence curve up to the critical point.

Recently we have developed a more general closure than (10) which allows for the direct
treatment of soft-core potentials thereby avoiding the preliminary mapping to a hard-core
reference system. This approximation is inspired by the soft MSA (SMSA) of liquid-state
theory [7] which can be written as

c(r) = cR(r) − βw(r) + [
g(r) − gR(r)

]
(1 − eβvR(r)). (11)
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Again, equation (11) can be generalized to the partially interacting systems, leading to the
same formal expression forCQ(k) as before (10). The only difference being the definition
of the functionGQ(r), which is now explicitly given by

GQ(r) = [
gQ(r) − gR(r)

]
(1 − eβvR(r)). (12)

This form becomes equivalent to the core condition in the limit of hard-sphere reference
system but is also applicable to soft-core reference potentials. The parameterλQ in
equation (10) is still determined by the compressibility sum rule (7) which guarantees
the validity of the critical exponents (8) within this approximation.

In order to implement the closure (10), (12) within the HRT equation (4) it is convenient
to expand the functionGQ(r) in a basis of short-range functions, project equation (12) on
this basis and write differential equations for the expansion coefficients [5]. Following this
procedure, an efficient algorithm for the solution of the resulting PDE has been set up [9].

Figure 2. The structure factor of a Lennard-Jones fluid at reduced temperatureT ∗ = 1.36 and
densityρ∗ = 0.5. Solid line: SC-HRT; dotted line: the HC-HRT; dashed line: the MHNC
result.

As an example, in figure 2 we show the soft-core HRT (SC-HRT) results for the structure
factor of a Lennard-Jones fluid compared with the previously described approximation (HC-
HRT) and to the MHNC result. The SC-HRT result is clearly closer to the MHNC result
at all wavevectors except the small ones. It is known that the MHNC model describes
quite accurately the short-range part of the correlations including near-critical states, so we
conclude that the new closure SC-HRT is superior to HC-HRT.

4. The order parameter and criticality in mixtures

The HRT can be formally generalized to mixtures [10], the only difference with respect to
one-component fluids being the presence of species indices in the interactions and correlation
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functions. As a first step, the two-body potential is written as a sum of a reference part and
a remainder:vij (r) = vR

ij (r) + wij (r). After having introduced a cut-offQ in the Fourier
components of all the tailswij , analogously to equation (2), we can derive exact evolution
equations for the free energy and the correlation functions which describe the inclusion of
fluctuations on length scales 1/Q. For instance, the equation for the free energy reads

− d

dQ

(−βAQ

V

)
= 1

2

∫
k=Q

d�k

(2π)3
ln det

[
1 + β

[CQ(k)
]−1

w̃(k)
]
. (13)

Here matrix notation forCQ and w̃ is understood. This evolution equation is just the first
of the formal HRT hierarchy, but for the present discussion it is not necessary to elaborate
the detailed structure of the equations for the correlation functions. Notice that in order
to derive this hierarchy we need not specify the nature of the phase transitions that we
want to describe: our equations are valid far from the critical regime as well as in the
critical region, independently of the character of the transition, liquid–vapour, demixing or
of mixed character. In this respect HRT differs from the usual RG treatments which start
from the definition of the local order parameter and the associated effective Hamiltonian
which governs its fluctuations.

Figure 3. Mean-field critical lines and the direction of the order parameter in the density–
concentration plane for a neon–krypton mixture. The critical line originating from the critical
point of pure Ne (marked with a square in the figure) stops almost immediately upon addition
of Kr.

Near a critical point and in the long-wavelength limit, the equations simplify acquiring
a universal structure due to the generalized compressibility sum rule:

CQ
ij (k = 0) = ∂2(−βAQ/V )

∂ρi ∂ρj

(14)

which relates the divergence ofany second derivative of the free energy to the vanishing of
the determinant of the direct correlation functions in the(k, Q) → 0 limit. Notice that the
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exact vanishing of det[CQ=0(k = 0)] occurs at a critical point, irrespective of the physical
nature of the order parameter and implies that (at least) one eigenvalue of the second-
derivative matrix (14) vanishes. The corresponding eigenvector defines a particular direction
in the density–concentration plane(ρ, c) specified by anangle ϕ. Here we specialize the
discussion to binary fluids and we use standard notation:ρ = ρ1+ρ2, c = ρ2/ρ. Physically,
this direction identifies the particular combination of density and concentration which shows
strong fluctuations at that critical point. This observation suggests that we define the order
parameterψ1 of the transition as the linear combination

ψ1 = δρ cosϕ + δc sinϕ (15)

whereδρ = δρ1 + δρ2, δc = (ρ1 δρ2 − ρ2 δρ1)/ρ. Therefore, the angleϕ determines, via
equation (15), the order parameter which generally turns out to be neither pure density
(liquid–vapour) nor concentration (demixing) except for for the special valuesϕ = 0 and
ϕ = π/2 respectively. An arrow in the density–concentration plane conveniently gives a
visual representation of the order parameter angle at the critical point. As an example we
report in figure 3 the mean-field critical lines for a neon–krypton mixture, modelled by
LJ potentials, in the density–concentration plane. The arrows, according to the previous
definition, identify the character of the transition, which is seen to change continuously
along the critical line from mostly liquid–vapour at moderate densities to mostly demixing
in the high-density region. We also notice that the angle defining the order parameter in
mixtures can be related by exact identities to purely thermodynamic quantities (e.g. the
partial molar volumes) or to the concentration and volume difference of the two coexisting
phases just below the critical point [5]. These identities may be useful for an experimental
determination of the order parameter in binary fluids.

The asymptotic critical properties of a binary mixture can be studied within HRT by
extending the same analysis and approximations as were discussed in the one-component
case. In particular, under the assumption that all of the partial direct correlation functions
CQ

ij (k) remain analytic ink even at the critical point, the evolution equation for the free
energy (13) can be closed by use of the compressibility relation (14). The resulting
equation is again a PDE, now involving three variables: the densityρ, the concentration
c and the evolution parameter, i.e. the cut-off,Q. Again, the HRT equations in the long-
wavelength limit become identical to RG equations for an effective action involvingtwo
fluctuating fields: besides the local order parameterψ1 previously introduced, a further
weakly fluctuating variableψ2 appears in the effective action:

S[ψ1, ψ2] =
∫

dx

[
1

2
|∇ψ1|2 + rψ2

1 + g2ψ2
2 + uψ4

1 + wgψ2
1ψ2

]
. (16)

Physically, the fieldψ2 represents the further linearly independent combination of density
and concentrationψ2 = δρ cosϕ − δc sinϕ.

A direct analysis of the critical properties displayed by the HRT equations leads to the
conclusion that the critical phenomena in binary fluids are governed by a fixed point where
the two fields(ψ1, ψ2) are non-trivially coupled (w∗ 6= 0). However, this asymptotic critical
behaviour is masked by the presence of strong crossover effects due to the competition of
another (unstable) fixed point where the two fields are decoupled (w∗ = 0). In both
cases the critical exponents turn out to be related to those of one-component systems. The
asymptotic behaviour agrees with the predictions of Fisher’s ‘phenomenologicalansatz’
[11]: the isothermal compressibility at fixed concentration diverges weakly with temperature
with an exponent−α/(1−α), while the specific heat at constant volume attains a finite limit
at the critical point. Instead in the crossover region the isothermal compressibility remains
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Figure 4. Effective critical exponents close to two points A and B along the critical lines of
an argon–xenon mixture. Left-hand panel: compressibility (γ ) and specific heat (α) effective
exponents as functions of the reduced temperature. Right-hand panel: mean-field critical lines
of the mixture projected on the density–concentration plane.

flat and the specific heat grows with an exponent−α as in one-component systems. In
general, we find that the asymptotic behaviour sets in so close to the critical point that only
the crossover region is experimentally accessible. This agrees with the experimental findings
[12]. Under certain circumstances, however, the asymptotic regimes become wider. We
have studied the extent of the crossover region by use of the simple ‘quartic’ approximation
to the HRT equations already discussed in the framework of one-component systems,
which givesα = 0.2 according to equation (9). As an example, we have estimated the
effective critical exponent for the divergence of compressibility (γeff ) and specific heat
(αeff ) for parameters chosen so as to mimic an argon–xenon mixture at two points on
the ‘liquid–vapour’ critical line. The results of figure 4 show that the expected crossover
temperature changes considerably at different points along the same critical line. The
crossover temperature strongly correlates with the strength of the coupling between(ψ1, ψ2)

in the effective action (16). A general analysis has shown that mixtures near critical end
points or with phase diagrams close to a change in the topology are favourable situations
where the asymptotic critical behaviour can be experimentally detected [13].

5. The phase diagram of binary fluids

In order to study the phase diagram of a microscopic model of mixtures on the basis of
a realistic approximation, we have generalized the MSA closure (10) already successfully
applied for one-component fluids. As a first step, we have not implemented the core
condition, i.e. we have simply dropped the functionGQ(k) in (10). By substituting this
approximation into the evolution equation for the free energy (13), we get a PDE which
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Figure 5. The coexistence region for a symmetric Lennard-Jones mixture with strength ratio
ε12/ε11 = 0.75 at a temperatureT ∗ = 1.15. Full symbols: numerical integration of the HRT
PDE. Open symbols: simulation results from reference [15].

Figure 6. Isothermal sections of the coexistence region for a neon–krypton mixture. Full
symbols: numerical integration of the HRT PDE for a mixture of Lennard-Jones molecules.
Open symbols: experimental results from reference [16].

can be numerically integrated [14]. We have first applied this theory to the study of the
phase diagram of a simple model where simulation results are available: a mixture of two
LJ fluids with equal strengths and diameters between like particles and different strength
between unlike molecules. The shape of the coexistence region at the reduced temperature
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T ∗ = 1.15 is compared to simulation results [15] in figure 5. We have also studied
a Lennard-Jones mixture with parameters suitable to represent a neon–krypton mixture.
Sections of the coexistence curve at two temperatures are shown in figure 6 together with
the experimental results of reference [16]. The good agreement both with simulation and
experiment is encouraging and suggests that the HRT equation can be successfully applied
to the quantitative study of phase diagrams in binary fluids.

6. Conclusions

The present application of the HRT has shown that this scheme is a flexible and powerful
approach for dealing with equilibrium fluctuations over all length scales. At short distance
it has an accuracy comparable to that of standard liquid-state theories. At longer range, the
proper critical behaviour is recovered if the system is close to the critical point. HRT appears
to be the only available theoretical scheme which has the merits of liquid-state theories and
of RG models. A number of applications to models of simple fluids, and of mixtures and
also to lattice models have shown that it is possible to close the full infinite HRT hierarchy
in a reasonable way at the first equation so that rather accurate results are obtained for
thermodynamic quantities and for correlation functions. Among the most prominent results
we recall the microscopic characterization of criticality and of crossover phenomena in
binary fluid mixtures and the development of a practical scheme for obtaining the phase
boundaries in binary fluids, beyond mean-field approximations. Applications and extensions
of HRT to other models, to coulombic mixtures and to magnetic models with competing
interactions are under way. The complexity of the HRT hierarchy when we go beyond the
first equation suggests that an accuracy in the values of the critical exponents comparable
with that of the most sophisticated RG schemes will not be achieved easily using HRT. In
this respect, one can predict another use of HRT as a tool to generate, from the microscopic
interactions, the effective coupling parameters which enter the phenomenological action
which can then be treated by field theoretical techniques.
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